tensorflow


GPU is not used for calculations despite tensorflow-gpu installed


My computer has the following software installed: Anaconda (3), TensorFlow (GPU), and Keras.
There are two Anaconda virtual environments - one with TensorFlow for Python 2.7 and one for 3.5, both GPU version, installed according to the TF instructions. (I had a CPU version of TensorFlow installed previously in a separate environment, but I've deleted it.)
When I run the following:
source activate tensorflow-gpu-3.5
python code.py
and check nvidia-smi it shows only 3MiB GPU Memory Usage by Python, so it looks like GPU is not used for calculations.
(code.py is a simple deep Q-learning algorithm implemented with Keras)
Any ideas what can be going wrong?
A good way to debug these problems is to check which operations have been allocated to which devices.
You can check this by passing a configuration parameter to the session:
session = tf.Session(config=tf.ConfigProto(log_device_placement=True))
When you run your app, you will see some output indicating which devices are being used.
You can find more information here:
https://www.tensorflow.org/tutorials/using_gpu

Related Links

Tensorflow: has no attribute 'numpy_input_fn'
Tesorflow placeholder depends on other placeholder
tensorflow when input_data MNIST_data , zlib.error: Error -3 while decompressing: invalid block type
Taking specific pixel location causes slow training + fills up memory for no reason
Can RNN be used to classification task in tensorflow?
Keras ignores the GPU when using TensorFlow backend
How to reuse some parameters of a Variable in Tensorflow
ResourceExhaustedError when using session.run instead of train_step.run in a loop
What could provoke this Segmentation fault when importing tensorflow package?
Number of training and test samples in tensor flow code?
Crash on Porting Inception V3 Custom Model into Android Tensor Flow Camera Demo
I am training my own dataset and I got InvalidArgumentError in tf.image.decode_jpeg
Why tesorflow changes predictions when not changing the code?
slow performance when running multiple neural networks on single GPU
ArgumentError: argument --batch_size: conflicting option string: --batch_size in Spyder
Syntaxnet pretrained models for Italian language

Categories

HOME
plsql
blockchain
translation
angular2-directives
vlc
specflow
gspread
contact-form-7
deeplearning4j
cartodb
ndis
game-maker-studio-1.4
intellij-plugin
simple-injector
squarespace
r-lavaan
fop
avplayeritem
bootstrap-typeahead
csh
yosys
scalajs-react
printdocument
visual-c++-2017
web-frontend
pentaho-report-designer
chrome-native-messaging
blackboard
pitest
invoke-command
superscript
postgresql-9.2
hotmail
freebase
google-drive-realtime-api
ios-ui-automation
bing-maps-api
pmwiki
xamarin.uitest
python-idle
fqdn
w3-total-cache
goquery
ogre3d
ticker
rpostgresql
tofixed
butterknife
in-memory-database
jszip
opencpu
tomee
rmongodb
vst
gameanalytics
angularjs-ng-pattern
asteriskami
kendo-combobox
fps
remoteapp
group-concat
axes
document-oriented-db
site-prism
registrykey
anti-patterns
visual-studio-code
apache-mina
callstack
xaml-designer
cpan
python-ggplot
obfuscar
crystal-reports-10
json-patch
winrt-httpclient
bsod
sanitization
google-closure-library
vt100
gdataxml
mvs
usn
legacy-code
hinstance
serp
dashcode
asp.net-routing
pci-bus
windows-controls
standardized
self-reference
rd

Resources

Mobile Apps Dev
Database Users
javascript
java
csharp
php
android
MS Developer
developer works
python
ios
c
html
jquery
RDBMS discuss
Cloud Virtualization
Database Dev&Adm
javascript
java
csharp
php
python
android
jquery
ruby
ios
html
Mobile App
Mobile App
Mobile App